Scalable SCMA

Jianglei Ma
Sept. 24., 2017
New Technologies for Future Releases

SoftAI: Programmable Air-Interface
- Adaptive numerology
- Adaptive transmission duration
- Adaptive multiple access scheme
- Adaptive HARQ
From Orthogonal Multiple Access to Non-orthogonal Multiple Access

Dual-layer non-orthogonality for SoftAI

- **Inter-subband non-orthogonality:**
 - Subband based numerology optimization enabled by spectrum localized waveform from filtering/windowing
- **Intra-subband non-orthogonality**
 - Non-orthogonal multiple access
Multiple Access Scheme Evolution

Power domain and spatial domain separation can be further exploited.
NoMA Application Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Motivations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eMBB</td>
<td>• Enhance spectrum efficiency
 • Improve edge UE experience
 • Enable seamless mobility
 • Support more UEs</td>
</tr>
<tr>
<td>mMTC</td>
<td>• Support massive connectivity
 • Reduce signaling overhead
 • Reduce UE energy consumption</td>
</tr>
<tr>
<td>URLLC</td>
<td>• Reduce latency
 • Improve reliability</td>
</tr>
</tbody>
</table>
Non-orthogonal Multiple Access for UE Experience Enhancement

Multi-TRP Cooperation for guaranteed data rate everywhere

Transparent TRP HO for seamless mobility
Non-orthogonal Multiple Access for Latency/Signaling Overhead/Energy Consumption Reduction

Grant-free for sporadic small packet transmission
- Low latency
- Low signaling overhead
- Low energy consumption
- However potential UE collision

Grant-free for sporadic small packet transmission
- More delay and overhead for grant based TDD transmission

Non-orthogonal Multiple Access
- Robust to UE collision
- Better SE
Grant-free for Different UE States

- **Active-State**
- **Echo State (Inactive-State)**
- **Idle-State**

<table>
<thead>
<tr>
<th>UE State</th>
<th>mMBB</th>
<th>URLLC</th>
<th>mMTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- NR Cell

- eMBB
- mMTC
- URLLC
Non-orthogonal Multiple Access for Hyper Connectivity

- Superposed transmission to support more concurrent users
 - Enhanced connectivity
- Synchronous transmission is maintained within UE group without TA.
 - Close proximity based local time synchronization
- Asynchronous transmission is allowed between UE groups.
 - Time synchronization is not required between different groups.
 - Sub-band filter is applied to eliminate inter-group interference
Non-orthogonal Multiple Access Construction

- Non-orthogonal multiple access has been studied in Rel-14 NR study item phase.
- All proposed non-orthogonal MA schemes follow the following basic representation

- Non-orthogonal multiple access components:
 - Symbol level operation:
 - Without spreading or with spreading (linear or non-linear)
 - Resource mapping
 - Sparse or on-sparse
Non-orthogonal Multiple Access
- Symbol Level Operation

- Without spreading
 - Power domain superposition
 - Rely on advanced Rx to separate users

- With spreading
 - Additional code domain separation
 - Better inter-user interference suppression

- Linear spreading
 - Symbol level repetition
 - Spreading code optimization to allow more UE collision

- Non-linear spreading
 - Symbol level non-repetitive spreading
 - Additional code gain/diversity gain
Resource Mapping: Partial Collision With Sparse Spreading

Sparse RE mapping:
- Partial collision reduces inter-UE collision
- Partial collision reduces multi-user detection complexity
SCMA (Sparse Coded Multiple Access)
NoMA with Sparse Non-linear Spreading

Example 1: SCMA 4-point codebook

Example 2: SCMA 8-point codebook

Non-zero component-1
Non-zero component-2
Scalable SCMA

SCMA codebook Adaptation to meet different system requirements
Flexible SCMA codebook Design for Different Application Scenarios

For coverage enhancement
- Long codeword
- Non-sparse RE mapping

For connectivity enhancement
- Short codeword
- Sparse RE mapping

For PAPR reduction
- Short codeword
- Only one RE is active at each time
Benefits of Non-linear Spreading

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission mode</td>
<td>UL</td>
</tr>
<tr>
<td>Antenna configuration</td>
<td>1x2 uncorrelated</td>
</tr>
<tr>
<td>Channel model</td>
<td>TDLC-1000</td>
</tr>
<tr>
<td>Channel estimation</td>
<td>perfect</td>
</tr>
<tr>
<td>Resource allocation</td>
<td>12 RBs for NoMA, 1RB for OFDMA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFDMA</td>
<td>MMSE & Turbo-ML</td>
</tr>
<tr>
<td>MC-CDMA (linear non-sparse spreading)</td>
<td>MMSE-SIC</td>
</tr>
<tr>
<td>LDS (linear sparse spreading)</td>
<td>Turbo-MPA</td>
</tr>
<tr>
<td>SCMA (non-linear sparse spreading)</td>
<td>Turbo-MPA</td>
</tr>
</tbody>
</table>
Conclusions

- Non-orthogonal multiple access can be applied to enhance the performance of different applications:
 - eMBB
 - mMTC
 - URLL

- Scalable SCMA can be configured to meet different requirements of different services.
Thank you

Copyright©2015 Huawei Technologies Co., Ltd. All Rights Reserved.
The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.